Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431599

RESUMEN

The management of waste polylactide (PLA) in various solutions of thermophilic anaerobic digestion (AD) is problematic and often uneconomical. This paper proposes a different approach to the use of PLA in mesophilic AD, used more commonly on the industrial scale, which consists of assigning the function of a microbial carrier to the biopolymer. The study involved the testing of waste wafers and waste wafers and cheese in a co-substrate system, combined with digested sewage sludge. The experiment was conducted on a laboratory scale, in a batch bioreactor mode. They were used as test samples and as samples with the addition of a carrier: WF-control and WFC-control; WF + PLA and WFC + PLA. The main objective of the study was to verify the impact of PLA in the granular (PLAG) and powder (PLAP) forms on the stability and efficiency of the process. The results of the analysis of physicochemical properties of the carriers, including the critical thermal analysis by differential scanning calorimetry (DSC), as well as the amount of cellular biomass of Bacillus amyloliquefaciens obtained in a culture with the addition of the tested PLAG and PLAP, confirmed that PLA can be an effective cell carrier in mesophilic AD. The addition of PLAG produced better results for bacterial proliferation than the addition of powdered PLA. The highest level of dehydrogenase activity was maintained in the WFC + PLAG system. An increase in the volume of the methane produced for the samples digested with the PLA granules carrier was registered in the study. It went up by c.a. 26% for WF, from 356.11 m3 Mg-1 VS (WF-control) to 448.84 m3 Mg-1 VS (WF + PLAG), and for WFC, from 413.46 m3 Mg-1 VS, (WFC-control) to 519.98 m3 Mg-1 VS (WFC + PLAG).

2.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36081052

RESUMEN

The paper covers the problem of determination of defects and contamination in malting barley grains. The analysis of the problem indicated that although several attempts have been made, there are still no effective methods of identification of the quality of barley grains, such as the use of information technology, including intelligent sensors (currently, quality assessment of grain is performed manually). The aim of the study was the construction of a reduced set of the most important graphic descriptors from machine-collected digital images, important in the process of neural evaluation of the quality of BOJOS variety malting barley. Grains were sorted into three size fractions and seed images were collected. As a large number of graphic descriptors implied difficulties in the development and operation of neural classifiers, a PCA (Principal Component Analysis) statistical method of reducing empirical data contained in the analyzed set was applied. The grain quality expressed by an optimal set of transformed descriptors was modelled using artificial neural networks (ANN). The input layer consisted of eight neurons with a linear Postsynaptic Function (PSP) and a linear activation function. The one hidden layer was composed of sigmoid neurons having a linear PSP function and a logistic activation function. One sigmoid neuron was the output of the network. The results obtained show that neural identification of digital images with application of Principal Component Analysis (PCA) combined with neural classification is an effective tool supporting the process of rapid and reliable quality assessment of BOJOS malting barley grains.


Asunto(s)
Hordeum , Grano Comestible , Semillas
3.
Sensors (Basel) ; 22(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35632134

RESUMEN

Artificial Neural Networks are used to find the influence of habitat types on the quality of the environment expressed by the concentrations of toxic and harmful elements in avian tissue. The main habitat types were described according to the Corine Land Cover CLC2012 model. Eggs of free-living species of a colonial waterbird, the grey heron Ardea cinerea, were used as a biological data storing media for biomonitoring. For modeling purposes, pollution indices expressing the sum of the concentration of harmful and toxic elements (multi-contamination rank index) and indices for single elements were created. In the case of all the examined indices apart from Cd, the generated topologies were a multi-layer perceptron (MLP) with 1 hidden layer. Interestingly, in the case of Cd, the generated optimal topology was a network with a radial basis function (RBF). The data analysis showed that the increase in environmental pollution was mainly influenced by human industrial activity. The increase in Hg, Cd, and Pb content correlated mainly with the increase in the areas characterized by human activity (industrial, commercial, and transport units) in the vicinity of a grey heron breeding colony. The decrease in the above elements was conditioned by relative areas of farmland and inland waters. Pollution with Fe, Mn, Zn, and As was associated mainly with areas affected by industrial activities. As the location variable did not affect the quality of the obtained networks, it was removed from the models making them more universal.


Asunto(s)
Cáscara de Huevo , Metales Pesados , Animales , Aves , Cadmio/análisis , Cáscara de Huevo/química , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , Metales Pesados/análisis , Redes Neurales de la Computación
4.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36616762

RESUMEN

In the presented study, data on the size and structure of cattle herds in Wielkopolskie, Podlaskie, and Mazowieckie voivodeships in 2019 were analyzed and subjected to modelling with the use of artificial intelligence, namely artificial neural networks (ANNs). The potential amount of biogas (m3) from cattle manure and slurry for the analyzed provinces was as follows: for the Mazowieckie Voivodeship, 800,654,186 m3; for the Podlaskie voivodeship, 662,655,274 m3; and for the Wielkopolskie voivodeship, 657,571,373 m3. Neural modelling was applied to find the relationship between the structure of the herds and the amount of generated slurry and manure (biomethane potential), as well as to indicate the most important animal types participating in biogas production. In each of the analyzed cases, the three-layer MLP perceptron with a single hidden layer proved to be the most optimal network structure. Sensitivity analysis of the generated models concerning herd structure showed a significant contribution of dairy cows to the methanogenic potential for both slurry and manure. The amount of slurry produced in the Mazowieckie and Wielkopolskie voivodeships was influenced in turn by heifers (both 6-12 and 12-18 months old) and bulls 12-24 months old, and in the Podlaskie voivodeship by calves and heifers 6-12 months old. As for manure, in addition to cows, bulls 12-24 months old and heifers 12-18 represented the main factor for Mazowieckie and Wielkopolskie voivodeships, and heifers (both 6-12 and 12-18 months old) for Podlaskie voivodeship.


Asunto(s)
Biocombustibles , Estiércol , Bovinos , Animales , Masculino , Femenino , Polonia , Inteligencia Artificial , Industria Lechera
5.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502597

RESUMEN

Image analysis using neural modeling is one of the most dynamically developing methods employing artificial intelligence. The feature that caused such widespread use of this technique is mostly the ability of automatic generalization of scientific knowledge as well as the possibility of parallel analysis of the empirical data. A properly conducted learning process of artificial neural network (ANN) allows the classification of new, unknown data, which helps to increase the efficiency of the generated models in practice. Neural image analysis is a method that allows extracting information carried in the form of digital images. The paper focuses on the determination of imperfections such as contaminations and damages in the malting barley grains on the basis of information encoded in the graphic form represented by the digital photographs of kernels. This choice was dictated by the current state of knowledge regarding the classification of contamination that uses undesirable features of kernels to exclude them from use in the malting industry. Currently, a qualitative assessment of kernels is carried by malthouse-certified employees acting as experts. Contaminants are separated from a sample of malting barley manually, and the percentages of previously defined groups of contaminations are calculated. The analysis of the problem indicates a lack of effective methods of identifying the quality of barley kernels, such as the use of information technology. There are new possibilities of using modern methods of artificial intelligence (such as neural image analysis) for the determination of impurities in malting barley. However, there is the problem of effective compression of graphic data to a form acceptable for ANN simulators. The aim of the work is to develop an effective procedure of graphical data compression supporting the qualitative assessment of malting barley with the use of modern information technologies. Image analysis can be implemented into dedicated software.


Asunto(s)
Hordeum , Inteligencia Artificial , Grano Comestible
6.
Materials (Basel) ; 14(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067572

RESUMEN

This paper aims to compare, in vitro, the biomechanical properties of an overdenture retained by two bar-retained implants and an overdenture retained by two bar-retained implants with ball attachments. An edentulous mandible model was prepared for the study based on the FRASACO mold with two implants. In the first system, the "rider" type (PRECI-HORIX, CEKA) retention structure and the complete mandibular denture with the matrix were made. In the second system, the "rider" type retention suprastructure was also used. In the distal part, (CEKA) clips were placed symmetrically, and a complete mandibular denture, together with the matrix on the bar, and the clip patrices were made. A numerical model was developed for each system where all elements were positioned and related to geometric relations, as in reality. The FEA analysis (finite element analysis) was carried out for seven types of loads: with vertical forces of 20, 50, and 100 N and oblique forces of 20 and 50 N acting on individual teeth of the denture, namely central incisor, canine, and first molar. Displacements, stresses, and deformations within the systems were investigated. Maximum denture displacement in the first system was 0.7 mm. Maximum bar stress amounted to 27.528 MPa, and implant stress to 23.16 MPa. Maximum denture displacement in the second system was 0.6 mm. Maximum bar stress amounted to 578.6 MPa, that of clips was 136.99 MPa, and that of implants was 51.418 MPa. Clips cause smaller displacement of the overdenture when it is loaded but generate higher stress within the precision elements and implants compared to a denture retained only by a bar. Regardless of the shape of the precision element, small deformations occur that mainly affect the mucosa and the matrix.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31500258

RESUMEN

Self-Organising Feature Map (SOFM) neural models and the Learning Vector Quantization (LVQ) algorithm were used to produce a classifier identifying the quality classes of compost, according to the degree of its maturation within a period of time recorded in digital images. Digital images of compost at different stages of maturation were taken in a laboratory. They were used to generate an SOFM neural topological map with centres of concentration of the classified cases. The radial neurons on the map were adequately labelled to represent five suggested quality classes describing the degree of maturation of the composted organic matter. This enabled the creation of a neural separator classifying the degree of compost maturation based on easily accessible graphic information encoded in the digital images. The research resulted in the development of original software for quick and easy assessment of compost maturity. The generated SOFM neural model was the kernel of the constructed IT system.


Asunto(s)
Inteligencia Artificial , Compostaje/normas , Aprendizaje , Redes Neurales de la Computación , Algoritmos , Programas Informáticos
8.
Molecules ; 24(1)2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30583475

RESUMEN

It was the objective of this study to verify the efficiency and stability of anaerobic digestion (AD) for selected confectionery waste, including chocolate bars (CB), wafers (W), and filled wafers (FW), by inoculation with digested cattle slurry and maize silage pulp. Information in the literature on biogas yield for these materials and on their usefulness as substrate in biogas plants remains to be scarce. Owing to its chemical structure, including the significant content of carbon-rich carbohydrates and fat, the confectionery waste has a high biomethane potential. An analysis of the AD process indicates differences in the fluctuations of the pH values of three test samples. In comparison with W and FW, CB tended to show slightly more reduced pH values in the first step of the process; moreover an increase in the content of volatile fatty acids (VFA) was recorded. In the case of FW, the biogas production process showed the highest stability. Differences in the decomposition dynamics for the three types of test waste were accounted for by their different carbohydrate contents and also different biodegradabilities of specific compounds. The highest efficiency of the AD process was obtained for the filled wafers, where the biogas volumes, including methane, were 684.79 m³ Mg-1 VS and 506.32 m³ Mg-1 VS, respectively. A comparable volume of biogas (673.48 m³ Mg-1 VS) and a lower volume of methane (407.46 m³ Mg-1 VS) were obtained for chocolate bars. The lowest volumes among the three test material types, i.e., 496.78 m³ Mg-1 VS (biogas) and 317.42 m³ Mg-1 VS (methane), were obtained for wafers. This article also proposes a method of estimation of the biochemical methane potential (theoretical BMP) based on the chemical equations of degradation of sugar, fats, and proteins and known biochemical composition (expressed in grams).


Asunto(s)
Anaerobiosis , Biodegradación Ambiental , Biocombustibles , Residuos , Análisis de Varianza , Reactores Biológicos , Fermentación , Metano/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...